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Generalized asymptotic description of the propagated field dynamics
in Gaussian pulse propagation in a linear, causally dispersive medium

Constantinos M. Balictsis*
Department of Computer Science & Electrical Engineering, University of Vermont, Burlington, Vermont 05405

Kurt E. Oughstun
College of Engineering & Mathematics, University of Vermont, Burlington, Vermont 05405

~Received 22 February 1996!

As the initial pulse envelope width of an input Gaussian pulse-modulated harmonic wave is increased above
the characteristic relaxation time of a single resonance Lorentz model dielectric, the classical asymptotic
description of the propagated field becomes increasingly inaccurate at a fixed propagation distance and must
then be generalized in order to become uniformly valid with respect to the initial pulse width. The required
generalization results in a modified complex phase function that depends not only upon the dispersive medium
parameters and the propagation distance, but also upon the initial pulse width. The resultant modified asymp-
totic description of Gaussian pulse propagation is shown to be uniformly valid in the initial pulse width. The
modified asymptotic description presented here reduces to the classical asymptotic result presented in an earlier
paper@Phys. Rev. E47, 3645~1993!# in the limit of an input ultrashort Gaussian pulse. In the opposite limit
of a very broad input pulse, the modified asymptotic description reduces to that obtained with the well-known
quasimonochromatic or slowly varying envelope approximation. Furthermore, the modified asymptotic de-
scription provides a clear description of the transition from the ultrashort limit to the quasimonochromatic
regime for Gaussian pulse propagation.@S1063-651X~97!01702-9#

PACS number~s!: 03.40.Kf
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I. INTRODUCTION

Recently developed pulse generation and compres
techniques have enabled the production of ultrashort elec
magnetic wave packets in a variety of spectral domains, s
as the far-infrared@1# and visible@2# regions, which contain
only a few oscillation periods under their envelope. The
vent of such ultrashort pulses has since posed critical q
tions on the validity of the slowly varying envelope approx
mation which is commonly utilized to describe the
propagation in linear@3–5# as well as nonlinear@4–7# dis-
persive media. This is due to the violation of the basic
sumption in this approximation concerning the slow var
tion of the complex pulse envelope over its avera
oscillation period and over its average wavelength@5#. An
important alternative towards overcoming this critical dif
culty in linear, causally dispersive media originated with t
seminal investigations of Sommerfeld and Brillouin@8#, who
used the asymptotic method of steepest descents@9,10# in
order to describe the propagation of a unit step-functi
modulated harmonic wave in a single resonance Lore
model dielectric. More recently, use of modern asympto
techniques@10–15# has substantially improved the analyt
description of the solution to this important canonical prop
gation problem@16–19# whose accuracy has been com
pletely verified through comparison with purely numeric
experiments@19–22#. Moreover, use of these asymptot
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techniques has also led to an accurate, uniformly valid
scription of the dynamical evolution of the propagated fie
due to an inputd function pulse@16,17,19# and, more impor-
tantly, due to an input rectangular-envelope-modulated h
monic wave of arbitrary initial pulse width@18,23,24# in a
single as well as a multiple resonance Lorentz medium.

Subsequent attempts to extend these modern asymp
techniques to the canonical problem of Gaussian pu
propagation have, until now, been restricted to the extre
ultrashort pulse regime where pulse breakup into general
precursor fields is observed@18,24,25#. On the other hand
the majority of approaches to this important canonical pr
lem have been restricted to relatively broad input pulses@26#
due to their reliance on the slowly varying envelope appro
mation @27–36#. In this paper we present an asymptotic d
scription of the propagated field dynamics for Gaussian pu
propagation of arbitrary initial pulse width in a single res
nance Lorentz model dielectric. This analysis is based upo
modified asymptotic approach@37–39# that utilizes the
saddle point method due to Olver@10,11# and results in an
asymptotic description of the propagated field which redu
to the opposite limiting descriptions afforded by the previo
approaches which are only applicable either in the extre
ultrashort or else in the slowly varying envelope pulse
gimes.

II. INTEGRAL FORMULATION
OF GAUSSIAN PULSE PROPAGATION

Consider an input unit-amplitude, Gaussian-envelo
modulated harmonic wave of constant applied carrier f
quencyvc.0 and initial pulse width~full width at thee21

points! 2T.0 that is given by

-
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55 1911GENERALIZED ASYMPTOTIC DESCRIPTION OF THE . . .
f ~ t !5expH 2S t2t0
T D 2J sin~vct1c!, ~1!

which is propagating in the positivez direction through a
linear, homogeneous, isotropic, temporally dispersive die
tric whose frequency dispersion is described by the sin
resonance Lorentz model with complex index of refractio

n~v!5S 12
b2

v22v0
212idv D 1/2, ~2!

which occupies the source-free half spacez>0. Herev0 is
the undamped resonance frequency,d the phenomenologica
damping constant, andb is the plasma frequency of th
lossy, dispersive dielectric. The input Gaussian envelop
the planez50 is centered around the timet0.0 and is con-
sidered to extend over all time. Moreover, the constant ph
factorc appearing in Eq.~1! is equal to zero for a modulate
sine wave while it is equal top/2 for a modulated cosine
wave. The integral representation of the propagated p
wave pulse in the half spacez>0 is given by

A~z,t !5
1

2pEc f̃ ~v!expF zcf~v,u!Gdv, ~3!

where u5ct/z is a dimensionless space-time parame
f(v,u)5 iv@n(v)2u# is the classical complex phase fun
tion, and where

f̃ ~v!5E
2`

`

f ~ t !eivtdt, ~4!

is the temporal Fourier spectrum of the initial pul
f (t)5A(0,t) at the planez50. HereA(z,t) represents eithe
the scalar potential or any scalar component of the elec
field, magnetice field, Hertz vector, or vector potential fie
whose spectral amplitudeÃ(z,v) satisfies the scalar Helm
holtz equation

@¹21 k̃2~v!#Ã~z,v!50, ~5!

which is said to be dispersive. The complex wave num
k̃(v) is given by

k̃~v!5b~v!1 ia~v!5
v

c
n~v!, ~6!

where c denotes the speed of light in vacuum. He
b(v)5Re$k̃(v)% is the plane wave propagation factor a
a(v)5Im$k̃(v)% is the attenuation factor, where Re$ % de-
notes the real part and Im$ % the imaginary part of the quan
tity appearing inside the braces.

The classical asymptotic description of ultrashort Gau
ian pulse propagation presented in Ref.@25#, which consists
of an application of modern asymptotic methods of appro
mation to the classical integral representation~3! of Gaussian
pulse propagation, is incapable of providing an accurate
scription of the propagated field dynamics when the ini
pulse width 2T of the input Gaussian pulse-modulated tim
harmonic wave is increased above the characteristic re
ation time 1/d of the lossy, dispersive medium under co
c-
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sideration. In order to overcome this problem and obtain
approximation of the propagated field which is uniform
valid not only in space and time but also in the initial pul
width 2T, the classical integral formulation of Gaussia
pulse propagation is rewritten as theexact, modified integral
representation of the propagated field A(z,t), which is given
by @37–39#

A~z,t !5
1

2p
ReH i E

c
ŨMexpF zcFM~v,u8!GdvJ ~7a!

for all z>0, where the modified complex spectral amplitu
ŨM for the Gaussian-envelope pulse is independent of
angular frequencyv and is given by

ŨM5p1/2T exp@2 i ~vct01c!#, ~7b!

and where the modified complex phase functionFM(v,u8)
is given by

FM~v,u8!5 iv@n~v!2u8#2
cT2

4z
~v2vc!

2. ~7c!

Here

u85
c

z
~ t2t0!5u2

ct0
z

~8!

is a dimensionless space-time parameter which characte
any specific space-time point in the propagated field evo
tion. The contour of integrationC appearing in Eq.~7a! may
be taken either as the real frequency axis or as any o
contour in the complexv plane that is homotopic to this
axis. Moreover, the first term appearing on the right-ha
side of Eq. ~7c! is the classical complex phase functio
f(v,u8), while the second term appearing on the right-ha
side of that equation is a complex phase termF f(v) that is
due to the frequency spectrum of the input Gaussian pu
Notice that for any finite, fixed input pulse width 2T.0, the
modified phase functionFM(v,u8) approaches the classica
phase functionf(v,u8) as the propagation distancez in-
creases. Hence, at a sufficiently large propagation dista
the propagated field behavior will reduce to that given by
classical asymptotic description@24,25#.

Althoughf* (2v* ,u8)5f(v,u8), where the superscrip
asterisk denotes the complex conjugate, because of the
ond term in the definition~7c! of the modified phase func
tion,

FM* ~2v* ,u8!ÞFM~v,u8!, ~9!

and the modified complex phase function is not symme
about the imaginary frequency axis. Nevertheless, as w
the case of the classical complex phase functionf(v,u8),
both the modified complex phase functionFM(v,u8) and
the complex index of refractionn(v) are analytic every-
where in the complexv plane except at the four branc
pointsv68 andv6 of n(v), where

n~v!5F ~v2v18 !~v2v28 !

~v2v1!~v2v2!
G1/2 ~10!
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1912 55CONSTANTINOS M. BALICTSIS AND KURT E. OUGHSTUN
for a single resonance Lorentz model dielectric, with

v68 56Av1
22d22 id, ~11a!

v656Av0
22d22 id, ~11b!

wherev1
25v0

21b2. The Lorentz model is a causal model@3#
of dielectric dispersion that has played a central role in
rigorous analysis of dispersive pulse propagation phenom
@8,16,17,40#. The medium parameters that were origina
chosen by Brillouin@8# and have been used in recent r
search@16–18, 23–25, 40# are used in the examples pr
sented in this paper, viz., v05431016 sec21,
b252031032 sec22, and d50.2831016 sec21. These me-
dium parameters correspond to a highly absorptive medi

III. UNIFORM ASYMPTOTIC DESCRIPTION
OF GAUSSIAN PULSE PROPAGATION

At each value ofu8, an application of the modern asymp
totic approach to the modified integral representation gi
in Eq. ~7a! results in a uniformly valid description of th
propagated pulse dynamics that is given by the general
pression@37,39#

A~z,t !5(
k
AMk~z,t !, ~12a!

where each termAMk(z,t) represents a separate asympto
contribution to the propagated fieldA(z,t) that is given by

AMk~z,t !5S c

2pzD 1/2ReH i expF zcFM~vPMk
,u8!G

3
ŨM

@2d2FM~vPMk
,u8!/dv2#1/2

@11O~z21!#J ,
~12b!

as z→`. The summation indexk appearing in Eq.~12a!
refers only to those saddle pointsPMk of the modified phase
functionFM(v,u8) that are relevant@37,39# at the particular
value ofu8 under consideration; their respective locations
the complexv plane are denoted byvPMk

(u8). From Eq.

~12b!, each component fieldAMk(z,t) is due to the asymp
totic contribution of the respective relevant saddle po
PMk to the uniform asymptotic approximation of the mod
fied integral representation~7a! of the propagated field. In
the derivation of Eqs.~12a! and ~12b! the relevant saddle
points ofFM(v,u8) are considered to be isolated from ea
other and of first order at each value ofu8, and only the first
term in the asymptotic expansion about each of these sa
e
na

.

n

x-

t

le

points has been retained. Each of these simplications is c
pletely justified for a single resonance Lorentz model diel
tric.

From Eqs.~12a! and ~12b! and the results of the Appen
dix, the dynamical evolution of the propagated field due
an input Gaussian-envelope-modulated harmonic wave o
bitrary initial pulse width at a fixed, but otherwise arbitrar
propagation distance in the mature dispersion region o
linear, causally dispersive medium whose frequency disp
sion is described by the single resonance Lorentz mode
dominated over any particular time interval by the pu
component that is due to the asymptotic contribution of
dominant, relevant saddle point of the modified phase fu
tion over this same time interval. The propagation charac
istics of each such dominant pulse component of the pro
gated field are described by the dynamics of the respec
dominant relevant saddle point over the corresponding t
interval. In particular, the following four propositions ar
found to be valid.

Proposition 1.From Eq.~A4!, the temporal evolution of
the instantaneous angular frequency of oscillation of e
dominant pulse component is given by the real part of
location of the respective dominant, relevant saddle poin
it evolves with time in the complexv plane.

Proposition 2.From Eqs.~A6!–~A9!, the envelope of any
given dominant pulse component attains a stationary p
when the trajectory followed by the corresponding domina
relevant saddle point intersects the real frequency axis in
complexv plane. From Eqs.~12b! and ~A11!, this point of
intersection is also a stationary point of the real part of
modified complex phase function along the real frequen
axis and is a maximum~minimum! if the corresponding sta
tionary point of the envelope of that pulse component is a
a maximum~minimum!.

Proposition 3.From Eqs.~A16a! and ~A16b!, the propa-
gation velocity of a stationary point of the envelope of
dominant pulse envelope is equal to the classical group
locity evaluated at the instantaneous angular frequency
oscillation associated with this stationary point.

Proposition 4.Finally, from Eq. ~A13!, if the instanta-
neous oscillation frequency of a stationary point of the en
lope of a dominant pulse component of the propagated fi
is equal to the applied carrier frequencyvc of the input
pulse, then the absorption coefficient of the dispersive m
dium attains a stationary point at this carrier frequency. T
stationary point is a maximum~minimum! if the correspond-
ing stationary point of the envelope of the respective pu
component is a minimum~maximum!.

For the single resonance Lorentz model dielectric tha
of central interest here, both analytical and numerical inv
tigations have revealed@37,39# that the modified complex
phase functionFM(v,u8) possesses five first-order sadd
pointsPMk , k51,2, . . . ,5. As the space-time parameteru8
increases over its entire domain, only each of the two sad
pointsPMl , l51,2, whose main dynamical evolution occu
in the first quadrant of the complexv plane
(v r>0, v i>0), can become a dominant, relevant sad
point over its correspondingu8 intervalDuMl . The asymp-
totic behavior of the propagated fieldA(z,t) is then domi-
nated by the respective pulse componentAMl(z,t), l51,2, in
each correspondingu8 interval. Moreover, it was found
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55 1913GENERALIZED ASYMPTOTIC DESCRIPTION OF THE . . .
FIG. 1. Asymptotic descrip-
tion of the dynamical field struc-
ture due to an input ultrashor
Gaussian-modulated cosine wav
with initial pulse width 2T
50.2 fsec and applied carrier fre
quency vc55.7531016 sec21 at
a propagation distance of 83.9
absorption depths at that carrie
frequency. The upper diagram il
lustrates the frequency depen
dence of the real part of the mod
fied complex phase function alon
the real frequency axis, the middl
diagram illustrates the dynamica
evolution in the complexv plane
of the five saddle points of the
modified phase function as a func
tion of the space-time paramete
u8, and the bottom diagram illus
trates the dynamical evolution o
the propagated pulse at the pr
scribed propagation distance i
the single resonance Lorent
model dielectric.
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@37,39# that in eachu8 intervalDuMl , l51,2, the envelope
of the corresponding dominant pulse componentAMl(z,t) is
Gaussian shaped with a single stationary point that is a m
mum. From Eq.~12b!, the value of the pulse compone
AMl(z,t) at its associated stationary point is given by

ApMl
5S c

2pz
D 1/2ReH iŨ MexpF zcFM~vpMl

,upMl
!G

3F2
d2FM~vpMl

,upMl
!

dv2 G21/2

@11O~z21!#J ,
~13!

asz→`, for l51,2, whereupMl
andvpMl

are defined in Eqs
~A10a! and~A10b!. If the contour of integration appearing i
Eq. ~7a! for the modified integral representation of the prop
gated field is taken as the real frequency axis, then eac
the field values given by Eq.~13! may be shown@37# to be
xi-

-
of

precisely the same value as that obtained from Eq.~7a! with
a quadratic approximation of the modified phase funct
about the respective real frequency value at which the
partXM(v r) of the modified phase function attains one of
two local maxima along the positive real frequency ax
This point is, in general, different from the pointv5vc at
which the expansion in the quasimonochromatic approxim
tion @27–36# is taken about, and approaches this point in
limit as T→` at fixedz.0.

IV. DISCUSSION

The transition from the ultrashort to the quasimonoch
matic pulse regime is now illustrated through several
amples. Consider first the case of an input ult
short Gaussian-modulated cosine wave with initial pu
width 2T50.2 fsec and applied carrier frequenc
vc55.7531016 sec21, which is near the upper end of th
absorption band of the single resonance Lorentz model
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FIG. 2. Theu8 evolution of the instantaneou
frequency of oscillation of the propagated field
Fig. 1.
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electric considered here@see the discussion following Eqs
~11a! and ~11b!#, at a propagation distance o
z583.92zd51.0 mm, wherezd denotes thee

21 absorption
depth at the carrier frequencyvc . The input Gaussian enve
lope at the planez50 is chosen to be centered at the tim
t0515T. The upper diagram in Fig. 1 illustrates the fr
quency dependence ofXM(v r), the real part of the modified
complex phase function evaluated along the real freque
axis, as given by Eqs.~A12a!–~A12c!. Notice that for a
physically realizable input Gaussian pulse,vc.0 and the
two local maxima ofXM(v r) that are located along the pos
tive real frequency axis atvmxl

, l51,2, always dominate the
remaining third local maximum that is situated along t
negative real frequency axis atvmx3

@37#. As a consequence
particular attention may be focused on each of the two
quency intervals around the pointsvmx1

andvmx2
. The dy-

namical evolution in the complexv plane of the five saddle
points PMk , k51,2, . . . ,5 of themodified phase function
FM(v,u8) as a function ofu8 is illustrated in the middle
diagram of Fig. 1. Notice that the two saddle pointsPM4 and
PM5 approach the two left branch pointsv2 andv28 , re-
spectively, while the two saddle pointsPM1 and PM2 ap-
proach the two right branch pointsv1 andv18 , respectively,
of the complex index of refractionn(v) as u8 approaches
1`. Moreover, the saddle pointPM2 asymptotically ap-
proaches the vertical linev5vc from above asu8 tends to
2`, while the saddle pointPM3 asymptotically approache
the same line from below asu8 tends to1`. The first-order
saddle pointPM2 is the dominant relevant saddle point of th
modified phase functionFM(v,u8) for all u8,1.455, its
trajectory intersecting the real frequency axis
v5v rcM2

59.026131016 sec21 when u85u rcM2
51.2831.

For all u8.1.455, the first-order saddle pointPM1 is the
dominant relevant saddle point ofFM(v,u8), its trajectory
intersecting the positive real frequency axis
v5v rcM1

51.42231016 sec21 when u85u rcM1
51.6871.

The close agreement between the corresponding quan
vmx1

andv rcM2
, as well as between the corresponding qu

titiesvmx2
andv rcM1

, is in complete agreement with the la
part of proposition 2 of the preceding section.

The bottom diagram in Fig. 1 illustrates the dynamic
evolution of the propagated fieldA(z,t) that was computed
using the modified asymptotic description presented in E
~12a! and ~12b!. It is clearly seen that the input ultrasho
cy

-

t

t

ies
-

l

s.

Gaussian-modulated envelope pulse has evolved into
Gaussian-shaped pulse components, the first pulse com
nent containing high-frequency oscillations while the seco
pulse component contains low-frequency oscillatio
The first pulse componentAs(z,t)5AM2(z,t) is recog-
nized as a generalized Sommerfeld precursor field@24,25#
and is due to the asymptotic contribution of the first-ord
saddle pointPM2 . This generalized Sommerfeld precurs
field is the dominant pulse component of the propaga
field A(z,t) for all u8,1.455, which is the space-time inte
val whenPM2 is the dominant relevant saddle point of th
modified phase functionFM(v,u8). The peak in the enve
lope of AS(z,t) occurs at the space-time pointu5upS
5upM2

51.256, at which point the propagated field oscillat

with the instantaneous angular frequencyv15vpS
5vpM2

59.266931016 sec21. For all u8.1.455, the propagated
field A(z,t) is dominated by the second pulse compon
AB(z,t)5AM1(z,t), which is recognized as a generalize
Brillouin precursor field@24,25#. This pulse component is
due to the asymptotic contribution of the first-order sad
pointPM1, which is the dominant relevant saddle point of t
modified phase functionFM(v,u8) over this space-time in-
terval. The peak in the envelope ofAB(z,t) occurs at the
space-time pointu5upB

5upM1
51.6724, at which point the

propagated field oscillates with the instantaneous angular
quency v15vpb5vpM151.353431016 sec21. Notice the
close agreement between the numerical values of the foll
ing ordered pairs of quantities:

~u rcM2
,v rcM2

!↔~upM2
,vpM2

!,

~u rcM1
,v rcM1

!↔~upM1
,vpM1

!.

This agreement is in keeping with the first part of propositi
2 of the preceding section.

Figure 2 illustrates theu8 evolution of the instantaneou
frequency of oscillation of the propagated field considered
Fig. 1. The data points indicated by the1 symbols in the
diagram were numerically determined from the dynami
field evolution as described by the modified asymptotic
proach. The two solid curves in the figure depict theu8 de-
pendence of the real parts of the saddle point locations
the two dominant relevant saddle pointsPM1 andPM2, re-
spectively. As the space-time parameteru8 increases over
the domain u8,1.455, the instantaneous oscillation fr
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FIG. 3. Velocity of propagation of the peak amplitude point of each pulse component of the propagated field due to an input G
pulse. The solid curve in the figure denotes the frequency dependence of the inverse relative group velocityc/vg(vpk

) evaluated at the
instantaneous oscillation frequencyvpk

of the propagated field componentAmk(z,t). The indicated data values are for the following cas
1, vc55.7531016 sec21, 2T50.20 fsec, z583.92zd51.0 mm; 2, vc55.7531016 sec21, 2T52.00 fsec, z583.92zd51.0 mm;
3, vc55.7531016 sec21, 2T520.0 fsec, z583.92zd51.0 mm; 4, vc51.0031016 sec21, 2T52.00 fsec, z50.543zd51.0 mm;
5, vc53.141631016 sec21, 2T52.0 fsec, z522.5zd51.0 mm; 6, vc54.0031016 sec21, 2T52.00 fsec, z5266.6zd51.0 mm;
7, vc510.031016 sec21, 2T52.00 fsec, z53.020zd51.0 mm; 8, vc55.7531016 sec21, 2T52.00 fsec, z58.392zd50.1 mm;
9, vc55.7531016 sec21, 2T52.00 fsec, z5839.2zd510.0 mm; 10, vc55.62531016 sec21, 2T55.0 fsec, z519.96zd50.2 mm;
11, vc55.62531016 sec21, 2T55.0 fsec, z549.91zd50.5 mm; 12, vc55.2531016 sec21, 2T510.0 fsec, z558.05zd50.4 mm;
13, vc55.2531016 sec21, 2T510.0 fsec, z5145.13zd51.0 mm; 14, vc55.0031016 sec21, 2T520.0 fsec,z5176.1zd51.0 mm.
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quency values of the propagated fieldA(z,t) are equal to
those of its dominant first pulse compone
AS(z,t)5AM2(z,t), and lie along the solid line depicting th
u8 dependence of the real part of the saddle point locatio
PM2, which is the dominant relevant saddle point of t
modified phase function over this entireu8 domain; that is,

vS~u8!5Re$vPM2
~u8!% ~14!

for all u8,1.455. Since the input carrier frequencyvc is
situated in the absorption band of the medium, and si
Re$vSPM2

(u8)% approaches the upper end of the absorpt

band from above asu8→`, thenvs(u8).vc . For all in-
creasing values ofu8 over the space-time interva
u8.1.455, the values of the instantaneous oscillation
quency of the propagated fieldA(z,t) are equal to those o
its now dominant second pulse compone
AB(z,t)5AM1(z,t), and lie along the solid line depicting th
u8 dependence of the real part of the saddle point locatio
PM1, which is the dominant relevant saddle point of t
modified phase function over this entireu8 domain; that is,

vB~u8!5Re$vSPM1
~u8!% ~15!

for all u8.1.455. Since Re$vSPM1
(u8)% approaches the

lower end of the absorption band from below asu8→`, then
vB(u8),vc . These results are in keeping with proposition
of the preceding section.
of

e
n
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t

of

The frequency components of the propagated field con
ered in Figs. 1 and 2 that lie within the medium absorpti
bandv0<v r<v1 have been greatly attenuated at the cho
propagation distance and are practically absent from
propagated field structure. Since the input carrier freque
vc lies within the absorption band in this case, the prop
gated pulse spectrum evolves into two spectral compon
domains, one a high-frequency component domain that
above the medium absorption band with a maximum
v r5vmx1

, the other a low-frequency component domain th

lies below the medium absorption band with a maximum
v15vmx2

. The first pulse componentAM2(z,t) of the propa-

gated fieldA(z,t) is then due to the propagated spectral co
ponents in the high-frequency band so that the field at
peak in the envelope ofAM2(z,t) oscillates at the angula
frequency vpM2

5v rcM2
5vmx1

of the dominant spectra

component in this frequency band. The second pulse com
nentAM1(z,t) of the propagated fieldA(z,t) is due to the
propagated spectral components in the low-frequency b
so that the field at the peak in the envelope ofAM1(z,t)
oscillates at the angular frequencyvpM1

5v rcM1
5vmx2

of

the dominant spectral component in this frequency band
Consider now the velocity of propagationvpMl

, l51,2, of

the peak in the envelope of each dominant pulse compo
AMl(z,t) of the propagated fieldA(z,t) due to an input
Gaussian pulse of arbitrary initial pulse width. The numeri
value of the space-time pointupMl

5c/vpMl
at which the peak
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FIG. 4. Numerically determined dynamica
field evolution due to an input unit-amplitud
Gaussian-envelope-modulated cosine wave w
initial pulse width 2T55.0 fsec and carrier fre-
quencyvc55.62531016 sec21 at the input plane
~top diagram! and at two increasing propagatio
distancesz in a single resonance Lorentz mod
dielectric. The horizontal axis in each diagra
denotes the retarded time witht0515T. In each
of the bottom two diagrams, the solid vertical lin
marks the instant of timet85z/c when the peak
amplitude of the propagated pulse would have
rived at that propagation distance if it had tra
eled with the speed of light in vacuum, while th
vertical dashed line marks the actual instant
time t85tpS when the peak amplitude in th
propagated pulse arrives at that propagation d
tancez. The middle diagram corresponds to th
superluminal velocity case 10 and the bottom d
gram to the subluminal velocity case 11 depict
in Fig. 3.
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in the envelope of each dominant pulse component
A(z,t) occurs is plotted in Fig. 3 at the corresponding va
of the instantaneous frequency of oscillationvpMl

at which
that envelope peak occurs for a wide variety of input puls
The squares in the figure denote the values of the res
obtained from numerical experiments, while the crosses
note the corresponding values determined from the res
described by the modified asymptotic approach. Both set
values are exactly located on the solid curve in the fig
which describes the frequency dependence of the rela
inverse group velocityc/vg(v r) for the single resonanc
Lorentz model dielectric considered here. These results
in keeping with proposition 3 of the preceding section.

Of particular interest in Fig. 3 is case 10 which shows t
the peak velocityvpMl

, may become larger than the speed
light in vacuum, as well as cases 12–14 which show t
vpMl

, may even become negative. These cases clearly
rant further, more detailed consideration, which is n
given. Consider first the dynamical field evolution due to
input Gaussian-envelope-modulated cosine wave with in
f
e

s.
lts
e-
lts
of
e
ve

re

t
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t
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n
l

pulse width 2T55.0 fsec and applied carrier frequenc
vc55.62531016 sec21. The top diagram in Fig. 4 illustrate
the initial field evolution at the input observation plane
z50, whereas the bottom two diagrams illustrate the d
namical field evolution of the resultant propagated field
two increasing propagation distances in the single resona
Lorentz model dielectric considered in this paper. In each
these diagrams, the horizontal axis represents the reta
time t85(t2t0). In each of the bottom two diagrams of th
figure, the vertical dashed line denotes the retarded instan
time t85tpS at which the peak in the envelope of the sing

dominant, Gaussian-shaped pulse componentAS(z,t) of
A(z,t) arrives at that corresponding propagation distan
while the solid vertical line denotes the retarded instant
time t85tvsl5z/c when this envelope peak would have a
rived at the corresponding propagation distance if it had tr
eled at the speed of light in vacuum. Iftps,0, then the

envelope peak ofA(z,t) propagates with a negative velocity
if 0,tps,tvsl , then the envelope peak propagates with
velocity that is greater than the speed of light in vacuum~i.e.,
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FIG. 5. Numerically determined dynamica
field evolution due to an input unit-amplitud
Gaussian-envelope-modulated cosine wave w
initial pulse width 2T510.0 fsec and carrier fre-
quencyvc55.2531016 sec21 at the input plane
~top diagram! and at two increasing propagatio
distancesz in a single resonance Lorentz mod
dielectric. The horizontal axis in each diagra
denotes the retarded time witht0515T. In each
of the bottom two diagrams, the solid vertical lin
marks the instant of timet5z/c when the peak
amplitude of the propagated pulse would have
rived at that propagation distance if it had tra
eled with the speed of light in vacuum, while th
vertical dashed line marks the actual instant
time t85tpS when the peak amplitude in th
propagated pulse arrives at that propagation d
tancez. The middle diagram corresponds to th
negative velocity case 12 and the bottom diagra
to the negative velocity case 13 depicted in F
3.
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with a superluminal velocity!; while if tps.tvsl , then the
envelope peak propagates with a velocity that is smaller t
the speed of light in vacuum~i.e., with a subluminal veloc-
ity!. Notice that if tps50, then the peak in the envelope

A(z,t) would have propagated with an infinite velocity. Th
dispersive action of the single resonance Lorentz model
electric on the input Gaussian pulse produces the superl
nal velocity of the peak in the envelope of the propaga
field A(z,t) at a sufficiently small propagation distance,
illustrated in the middle diagram of Fig. 4 with the corr
sponding case 10 data point in Fig. 3. This same enve
peak slows down to a subluminal velocity as the propaga
distance increases, as illustrated in the bottom diagram
Fig. 4 with the corresponding case 11 data point in Fig.
due to the same dispersive action. For sufficiently sm
propagation distances, this envelope peak occurs at an a
lar frequency at which the group velocity is superluminal;
the case illustrated in the middle diagram of Fig. 4, the fi
at the peak in the envelope ofA(z,t) oscillates with the
instantaneous angular frequencyvpS

>5.7131016 sec21 and
it propagates with the classical group veloc
n

i-
i-
d

e
n
of
,
ll
gu-
r
d

vpS5vg(vpS
)>1.16c at this frequency value. However, th

frequency component is also highly attenuated by the los
dispersive medium, so that as the pulse continues to pro
gate through the medium, the envelope peak shifts tow
those frequency values that have less attenuation assoc
with them, and accordingly propagate with sublumin
velocities; for the case illustrated in the bottom diagram
Fig. 4, the instantaneous frequency of oscillation of the
velope peak of the propagated fieldA(z,t) has shifted to the
higher-frequency valuevpS

>5.8331016 sec21, and this en-
velope peak propagates with the classical group velo
vpS5vg(vpS

)>0.65c at this frequency. As the propagatio
distance increases, the instantaneous oscillation freque
evolves out of the absorption band and the observed p
dynamics evolve toward the energy velocity description@40–
42# which is valid in the mature dispersion regime.

The other situation of special interest is presented in F
5, which depicts the dynamical field evolution due to
input Gaussian-envelope-modulated cosine wave with in
pulse width 2T510 fsec and applied carrier frequenc
vc55.2531016 sec21. The dynamical field evolution of the
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input pulse at the planez50 is illustrated in the upper dia
gram of Fig. 5, and the dynamical evolution of the result
propagated field at the two propagation distancesz50.4 and
1.0 mm in the single resonance Lorentz medium conside
here are illustrated in the middle and bottom diagrams,
spectively, of this figure. It is clearly seen in this figure s
quence that at a sufficiently small propagation distance,
peak of the envelope of the single dominant, Gauss
shaped pulse componentAS(z,t) of the propagated field
A(z,t) propagates with a negative velocity, as seen in
middle diagram of Fig. 5, which corresponds to the case
data point in Fig. 3. The velocityvpS at which the envelope

peak ofA(z,t) propagates remains negative while its ab
lute value increases as the propagation distance is slig
increased, as seen in the bottom diagram of Fig. 5, wh
corresponds to the case 13 data point in Fig. 3. This phen
enon is directly attributed to the action of the material d
persion on the frequency components of the pulse a
propagates through the lossy, dispersive medium. In
case, the temporal spectrum of the input Gaussian puls
sharply peaked around the carrier frequencyvc which lies in
the upper half of the medium absorption band. As the pro
gation distance increases, the low-frequency components
are present in the input pulse spectrum are attenuated
larger rate than are the high-frequency components. Co
quently, as the propagation distance increases, the pr
gated pulse spectrum becomes dominated by an increas
higher-frequency component, and the peak in the envelop
the propagated fieldA(z,t) propagates with the group veloc
ity at this frequency value. At the small propagation distan
considered in the middle diagram of Fig. 5, the domin
spectral component of the propagated field occurs at the
gular frequency valuevpS

>5.2931016 sec21.vc , which
still lies within the absorption band of the medium, and t
envelope peak ofA(z,t) propagates with the classical grou
velocity vpS5vg(vpS

)>22.86c at this frequency value. A
the slightly larger propagation distance considered in the
tom diagram of Fig. 5, the dominant spectral componen
the propagated pulse has been shifted further to the hig
frequency valuevps

>5.3531016 sec21 and the envelope

peak ofA(z,t) now propagates with the classical group v
locity vpS5vg(vpS

)>24.45c at this higher angular fre
quency. This observed trend that the group velocity of
envelope peak ofA(z,t) becomes increasingly negative
the propagation distance increases remains intact as
propagation distancez is increased further; however, th
overall field amplitude also rapidly attenuates to zero in t
case. Again, as the propagation distance increases into
mature dispersion regime, the pulse dynamics evolve tow
the energy velocity description@40–42#.

Similar analytical and numerical results have also be
reported by Garrett and McCumber@27#, who argue that, for
input Gaussian-modulated harmonic wave with no true
ginning or end with carrier frequency in the anomalous d
persion region of a Lorentz-type medium, the superlumi
and negative velocity dynamics of the envelope peak of
propagated pulse are both due to the action of the disper
medium on the weak early frequency components of the
put Gaussian envelope. Moreover, in his analytical inve
gations of the propagation of an input Gaussian pu
t
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through a resonant dielectric comprised of a homogene
distribution of two-level atoms embedded in a nondispers
host medium, Crisp@29# utilized the semiclassical theory for
malism to show that both the superluminal and the nega
velocity dynamics of the envelope peak of the propaga
pulse are due to the finite response time of the resonan
oms on the input Gaussian pulse. Notice also that both
perluminal and negative group velocities in both attenuat
and amplifying media have been observed experiment
@43–45#. The attenuative medium results are in agreem
with the results of the generalized asymptotic descript
presented in this paper at small propagation distances. H
ever, our analysis also clearly shows that the generali
asymptotic description evolves into the energy velocity d
scription as the propagation distance increases into the
ture dispersion regime. This asymptotic description
Gaussian pulse propagation in a lossy, dispersive med
which is uniform in the initial pulse width, also provides
clear description of the transition from the ultrashort pu
limit T<1/d, in which the propagated pulse separates int
generalized Sommerfeld precursor pulse component an
generalized Brillouin precursor pulse component,@24# to the
slowly varying envelope~or quasimonochromatic! regime
T.1/d in which the propagated field dynamics becom
dominated by a single one of these two pulse compone
Notice that for the numerical examples presented in this
per, the transition between the ultrashort and slowly vary
envelope regimes occurs at the characteristic relaxation
1/d50.357 fsec of this highly absorbing Lorentz model m
dium. As a point of comparison, about the infrared abso
tion line in triply distilled H2O at v51.1331014 sec21,
d52.731013 sec21 so that 1/d537 fsec.
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APPENDIX

From Eqs.~12a! and ~12b!, if PMl is the dominant rel-
evant saddle point of the modified complex phase funct
FM(v,u8) in the u8 intervalDuMl , i.e., the relevant saddle
point with the least exponential decay associated with it
all u8PDuMl , then the asymptotic contributionAMl(z,t) is
the dominant pulse component of the propagated fi
A(z,t) in this u8 domain. At each saddle pointPMl of the
modified complex phase functionFM(v,u8) the following
pair of relations are satisfied:

]XM~v r ,v i ,u8!

]v r
U

v5vPMl

5
]YM~v r ,v i ,u8!

]v i
U

v5vPMl

50,

~A1a!

]XM~v r ,v i ,u8!

]v i
U

v5vPMl

52
]YM~v r ,v i ,u8!

]v r
U

v5vPMl

50,

~A1b!
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and also

d2FM~v,u8!

dv2 U
v5vPMl

5U d2FM~vPMl
,u8!

dv2 U
3expH i argFd2FM~vPMl

,u8!

dv2 G J Þ0.

~A2!

Here, XM5Re$FM%, YM5Im$FM%, and v r5Re$v%,
v i5Im$v%, and the proper branch of the argument of t
term appearing in Eq.~A2! is specified during the implemen
tation of the modified asymptotic approach@10,11,16,37#.

The instantaneous angular frequency of oscillation
AMl(z,t), as well as that ofA(z,t), over theu8 interval
DuMl is obtained from the time derivative of the oscillato
phase term appearing in Eq.~12b! as @8,16,26#

v IMl
~u8!52

d

dt H zcYM„vPMl

r ~u8!,vPMl

i ~u8!,u8…

2
1

2
FargS d2FM„vPMl

~u8!,u8…

dv2 D 1pG J ,
~A3!

where vPMl

r (u8)5Re$vPMl
(u8)% and vPMl

i (u8)5

Im$vPMl
(u8)% are the real and imaginary parts of the re

evant saddle point location, respectively. Application of t
chain rule and Eqs.~A1a! and~A1b! to Eq. ~A3! then yields
@37#

v IMl
~u8!5Re$vPMl

~u8!%1D1Ml~u8!;Re$vPMl
~u8!%,

~A4!

where the final expression is asymptotically valid
z→1`. Here the termD1Ml(u8) is given by

D1Ml~u8!5
1

2

d

dt H argFd
2FM„vPMl

~u8!,u8…

dv2 G J 5O~z21!

~A5!

asz→1`, so that this term is asymptotically negligible
comparison to the first term on the right-hand side of E
~A4!, as indicated in the final expression.

In any particularu8 intervalDuMl , the stationary points
of the envelope of the dominant field componentAMl(z,t),
as well as those of the envelope of the propagated fi
A(z,t) over thatu8 interval, are given by the solutions of th
equation

d

dt H U d
2FM„vPMl

~u8!,u8…

dv2 U21/2

3expF zcXM„vPMl

r ~u8!,vPMl

i ~u8!,u8…G J 50, ~A6!
f

.

ld

which was obtained from Eq.~12b!. Application of the chain
rule and use of Eqs.~A1a! and~A1b! in Eq. ~A6! then yields
@37#

H U d2FM~vPMl
,u8!

dv2 U21/2

expF zcXM~vPMl

r ,vPMl

i ,u8!G J
3$2D2Ml~u8!1Im@vPMl

~u8!#%50, ~A7!

which is satisfied when the condition

Im$vPMl
~u8!%5D2Ml~u8! ~A8!

is satisfied, where

D2Ml~u8!5
1

4

d

dt H lnFU d2

dv2FM„vPMl
~u8!,u8…U2G J 5O~z21!

~A9!

asz→1`, so that this quantity is asymptotically negligib
in comparison to Re$vPMl

(u8)%. It follows from Eq. ~A6!

that such a stationary point is a maximum~minimum! when
the time derivative of the quantity appearing inside the s
ond set of brackets$ % on the left-hand side of Eq.~A7! is
negative~positive!.

Let u rcMl
denote the space-time parameter value in

interval DuMl when the trajectory followed in the comple
v plane by the dominant relevant saddle pointPMl of the
modified phase functionFM(v,u8) intersects the real fre
quency axis at the real frequency value denoted
v rcMl

5vPMl
(u rcMl

). Moreover, letupMl
denote the space

time point in the same space-time intervalDuMl when the
envelope of the dominant pulse componentAMl(z,t) of the
propagated fieldA(z,t) attains its corresponding stationa
point whose instantaneous frequency of oscillation is
noted byvpMl

. From Eq.~A4! and Eqs.~A6!–~A9! one has
that

upMl
5u rcMl

, ~A10a!

and

vpMl
5v rcMl

5vPMl
~upMl

!5vPMl
~u rcMl

!. ~A10b!

From Eqs.~7c! and ~13a! it may be shown that@37#

]XM~v r ,v i ,u8!

]v r
U

v5vpMl

5
]XM~v r !

]v r
U

v5vpMl

50,

~A11!

where

XM~v r !5Re$FM~v r ,v i ,u8!uv i50%5X~v r !1Xf~v r !

~A12a!

denotes the real part of the modified phase function ev
ated along the real frequency axis, with

X~v r !5Re$f~v r ,v i ,u8!uv i50%52v rni~v r !

~A12b!
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being the real part of the classical phase function evalua
along the real frequency axis, and with

Xf~v r !5Re$F f~v r ,v i !uv i50%52
cT2

4z
~v r2vc!

2

~A12c!

being the real part of the phase term that is contributed
the spectrum of the input Gaussian pulse-modulated
wave with carrier frequencyvc evaluated along the real fre
quency axis. Substitution of Eqs.~A12a!–~A12c! in Eq.
~A11! then yields@37#

]

]v r
@a~v r !#vr5vpMl

52
T2

2z
~vpMl

2vc!, ~A13!

where@see Eq.~6!#

a~v r !5
v r

c
ni~v r ! ~A14!

denotes the coefficient of absorption of the dispersive m
dium with complex index of refractionn(v)5nr(v)
1ini(v).

The valueupMl
PDuMl when the envelope ofAMl(z,t)
A.

k,
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e

-

attains a stationary point may be obtained from Eq.~A1b!
with the result@37#

upMl
5

]

]v r
@v rnr~v r !#vr5vpMl

, ~A15!

wherenr(v) denotes the real part of the complex index
refraction. This stationary point then propagates with the
locity

vpMl
5

c

upMl

5vg~vpMl
!, ~A16a!

where

vg~vpMl
!5H ]

]v r Fv r

c
nr~v r !G

vr5vpMl

J 21

~A16b!

is the classical group velocity evaluated at the angular
quency vpMl

5v rcMl
5vPMl

(upMl
) at which the dominant

relevant saddle pointPMl of the modified phase function
FM(v,u8) intersects the real frequency axis@see Eqs.
~A10a! and ~A10b!#.
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