PHYSICAL REVIEW E VOLUME 55, NUMBER 2 FEBRUARY 1997

Generalized asymptotic description of the propagated field dynamics
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As the initial pulse envelope width of an input Gaussian pulse-modulated harmonic wave is increased above
the characteristic relaxation time of a single resonance Lorentz model dielectric, the classical asymptotic
description of the propagated field becomes increasingly inaccurate at a fixed propagation distance and must
then be generalized in order to become uniformly valid with respect to the initial pulse width. The required
generalization results in a modified complex phase function that depends not only upon the dispersive medium
parameters and the propagation distance, but also upon the initial pulse width. The resultant modified asymp-
totic description of Gaussian pulse propagation is shown to be uniformly valid in the initial pulse width. The
modified asymptotic description presented here reduces to the classical asymptotic result presented in an earlier
paper[Phys. Rev. E47, 3645(1993] in the limit of an input ultrashort Gaussian pulse. In the opposite limit
of a very broad input pulse, the modified asymptotic description reduces to that obtained with the well-known
guasimonochromatic or slowly varying envelope approximation. Furthermore, the modified asymptotic de-
scription provides a clear description of the transition from the ultrashort limit to the quasimonochromatic
regime for Gaussian pulse propagatip®1063-651X97)01702-9

PACS numbds): 03.40.Kf

I. INTRODUCTION techniques has also led to an accurate, uniformly valid de-
scription of the dynamical evolution of the propagated field
Recently developed pulse generation and compressiosue to an inpu® function pulsg16,17,19 and, more impor-
techniques have enabled the production of ultrashort electréantly, due to an input rectangular-envelope-modulated har-
magnetic wave packets in a variety of spectral domains, suchonic wave of arbitrary initial pulse widtfl8,23,24 in a
as the far-infrared1] and visible[2] regions, which contain Single as well as a multiple resonance Lorentz medium.
only a few oscillation periods under their envelope. The ad- Subsequent attempts to extend these modern asymptotic
vent of such ultrashort pulses has since posed critical quedgchniques to the canonical problem of Gaussian pulse

tions on the validity of the slowly varying envelope approxi- Propagation have, until now, been restricted to the extreme
mation which is commonly utilized to describe their ultrashort pulse regime where pulse breakup into generalized

propagation in lineaf3—5] as well as nonlineafd—7] dis-  Precursor fields is observdd8,24,23. On the other hand,

persive media. This is due to the violation of the basic as:[he majority of approaches to this important canonical prob-

sumption in this approximation concerning the slow varia—Iem have been restricted to relatively broad input pul2éf

tion of th molex | avel ver its aver due to their reliance on the slowly varying envelope approxi-
on of Iheé complex puise envelope over 1S ave agemation[Z?—SG. In this paper we present an asymptotic de-
oscillation period and over its average wavelenggh An

. . . S ... scription of the propagated field dynamics for Gaussian pulse
important alternative towards overcoming this critical diffi- propagation of arbitrary initial puise width in a single reso-

culty in linear, causally dispersive media originated with theance Lorentz model dielectric. This analysis is based upon a
seminal investigations of Sommerfeld and Brillo@i8], who  odified asymptotic approach37-39 that utilizes the
used the asymptotic method of steepest desdéhid)] in  saddie point method due to OIVEL0,11] and results in an
order to describe the propagation of a unit step-functionasymptotic description of the propagated field which reduces
modulated harmonic wave in a single resonance Lorent the opposite limiting descriptions afforded by the previous
model dielectric. More recently, use of modern asymptoticapproaches which are only applicable either in the extreme
techniqueqd10-15 has substantially improved the analytic ultrashort or else in the slowly varying envelope pulse re-
description of the solution to this important canonical propa-gimes.
gation problem[16—19 whose accuracy has been com-
pletely verified through comparison with purely numerical

g . Il. INTEGRAL FORMULATION
experiments[19-22. Moreover, use of these asymptotic

OF GAUSSIAN PULSE PROPAGATION

Consider an input unit-amplitude, Gaussian-envelope-
*Present address: M&S Hourdakis SA Electronics, R&D Depart-modulated harmonic wave of constant applied carrier fre-
ment, Industrial Area Koropi, P.O. Box 117, 19400 Koropi, Attiki, quencyw.>0 and initial pulse widthfull width at the e !
Greece. pointg 2T>0 that is given by
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55 GENERALIZED ASYMPTOTIC DESCRIPTION OF THE ... 1911
t—t\2] . sideration. In order to overcome this problem and obtain an
f(t)=exp{ —(?) sin(wct+ ), (1) approximation of the propagated field which is uniformly
valid not only in space and time but also in the initial pulse
which is propagating in the positive direction through a Width 2T, the classical integral formulation of Gaussian
linear, homogeneous, isotropic, temporally dispersive dielecPulse propagation is rewritten as teeact, modified integral
tric whose frequency dispersion is described by the singléepresentation of the propagated fieldzt), which is given
resonance Lorentz model with complex index of refraction by [37-39

b2 1/2 1 —_ Z
n(w)Z(l— —) , @ Az )= ERe{ i fCuMexr{Ed)M(w,e') dw] (72

w’— wg-i- 2idw

which occupies the source-free half space0. Herew, is  for all z=0, where the modified complex spectral amplitude
the undamped resonance frequengyhe phenomenological U,, for the Gaussian-envelope pulse is independent of the
damping constant, antl is the plasma frequency of the angular frequency and is given by

lossy, dispersive dielectric. The input Gaussian envelope at _

the planez=0 is centered around the tinig>0 and is con- Un= 7T exd —i(wcto+ )], (7b)
sidered to extend over all time. Moreover, the constant phase

factor ¢ appearing in Eq(1) is equal to zero for a modulated and where the modified complex phase functibg(w,6’)

sine wave while it is equal ter/2 for a modulated cosine is given by
wave. The integral representation of the propagated plane

wave pulse in the half spac&=0 is given by ?

Py(w,0")=iw[n(w)—6']— C4—Z(w—wc)2. (70

1 (~ z
A(z,t)= ﬂfcf(a})ex%g d(w,0) |dw, 3 Here
where 6=ct/z is a dimensionless space-time parameter, alzf(t_t ):0_C_t0 @)
¢(w,0)=iw[n(w)— 0] is the classical complex phase func- z 0 z

tion, and where ) i . ) i )
is a dimensionless space-time parameter which characterizes

T (ot any specific space-time point in the propagated field evolu-
flw)= J%f(t)e dt, (4) tion. The contour of integratio@ appearing in Eq(7a may
be taken either as the real frequency axis or as any other
is the temporal Fourier spectrum of the initial pulse contour in the complex» plane that is homotopic to this
f(t)=A(0}) at the plane=0. HereA(z,t) represents either axis. Moreover, the first term appearing on the right-hand
the scalar potential or any scalar component of the electrigide of Eg.(7¢) is the classical complex phase function
field, magnetice field, Hertz vector, or vector potential field ¢(«,6"), while the second term appearing on the right-hand

whose spectral amplituda(z, ) satisfies the scalar Helm- Side of that equation is a complex phase tebg{w) that is
holtz equation due to the frequency spectrum of the input Gaussian pulse.

Notice that for any finite, fixed input pulse widthr2-0, the
[V2+’E2(w)]’,&(z,w)=0, (5) modified phase functio®,(w,#’) approaches the classical
phase functiong(w,f’) as the propagation distanazein-
which is said to be dispersive. The complex wave numbecreases. Hence, at a sufficiently large propagation distance,
]Z(w) is given by the propagated field behavior will reduce to that given by the
classical asymptotic descriptid@4,25.
~ , @ Although ¢* (— 0*,0') = ¢(w, 0"), where the superscript
k(w)=B(w)+ia(w)= En(“’)' (6 asterisk denotes the complex conjugate, because of the sec-
ond term in the definitior(7c) of the modified phase func-
where ¢ denotes the speed of light in vacuum. Heretion,
B(w)=Relk(w)} is the plane wave propagation factor and
a(w)=Im{k(w)} is the attenuation factor, where Rede-
notes the real part and { the imaginary part of the quan- and the modified complex phase function is not symmetric

tity appearing inside the braces. : : . .
The classical asymptotic description of ultrashort Gauss§bOUt the imaginary frequency axis. Nevertheless, as with

ian pulse propagation presented in H&b], which consists Lhoihc?r?: r?qfotjrzﬁe?jlacs;ﬁalleiomhp;ig ?:ﬁ;?d;;?ca%r,&;‘:gd
of an application of modern asymptotic methods of approxi—,[he comolex index of Pefrac[ziorm(w) are analw’tic every-
mation to the classical integral representatignof Gaussian h . pth | | tat th Bf/ b Y h
pulse propagation, is incapable of providing an accurate gelnere |r,1 € complexy plane except at the four branc
scription of the propagated field dynamics when the initialPO'NtS @ andw. of n(w), where
pulse width ZI' of the input Gaussian pulse-modulated time

harmonic wave is increased above the characteristic relax- n(w)=
ation time 1/ of the lossy, dispersive medium under con- (w—wi)(0-o0_)

OY(—w*,0)FDPy(w,0), 9

(w—w) ) (w—wl) 12

(10
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for a single resonance Lorentz model dielectric, with points has been retained. Each of these simplications is com-
pletely justified for a single resonance Lorentz model dielec-
tric.
w, ==+ le?_ 5%—i6, (1139 From Egs.(123 and(12b) and the results of the Appen-

dix, the dynamical evolution of the propagated field due to
an input Gaussian-envelope-modulated harmonic wave of ar-
e 22 bitrary initial pulse width at a fixed, but otherwise arbitrary,
Wr =N OO, (110 propagation distance in the mature dispersion region of a
linear, causally dispersive medium whose frequency disper-
2 2,2 _ sion is described by the single resonance Lorentz model, is
wherew;=wy+b?. The Lorentz model is a causal mo@8]  jominated over any particular time interval by the pulse
of dielectric dispersion that has played a central role in th%omponent that is due to the asymptotic contribution of the
rigorous analysis of dispersive pulse propagation phenomeng,minant, relevant saddle point of the modified phase func-
[8,16,17,40. The medium parameters that were originally yjon over this same time interval. The propagation character-
chosen by Brillouin[8] and have been used in recent re-jgiics of each such dominant pulse component of the propa-
search[16-18, 23-25, 4pare used in the examples pre- yated field are described by the dynamics of the respective

. . . _ 6 71
sgnted n th_|52 paper,  Vviz., %’O_Aff 10 sec’,  dominant relevant saddle point over the corresponding time
b?=20x10°* sec ?, and 6=0.28<10'° sec . These me- interval. In particular, the following four propositions are

dium parameters correspond to a highly absorptive mediunond to be valid.

Proposition 1.From Eq.(A4), the temporal evolution of
IIl. UNIFORM ASYMPTOTIC DESCRIPTION the instantaneous angular frequency of oscillation of each
OF GAUSSIAN PULSE PROPAGATION dominant pulse component is given by the real part of the

, o location of the respective dominant, relevant saddle point as
At each value of9’, an application of the modern asymp- it evolves with time in the complew plane.

totic approach to the modified integral representation given Proposition 2.From Eqs(A6)—(A9), the envelope of any

in Eq. (78 results in a uniformly valid description of the given dominant pulse component attains a stationary point
propagated pulse dynamics that is given by the general eXynen the trajectory followed by the corresponding dominant,
pression(37,39 relevant saddle point intersects the real frequency axis in the
complexw plane. From Eqs(12b) and(All), this point of
intersection is also a stationary point of the real part of the
modified complex phase function along the real frequency
axis and is a maximurtminimum) if the corresponding sta-
tionary point of the envelope of that pulse component is also
a maximum(minimum).

where each termi\,(z,t) represents a separate asymptotic Proposition 3.From Egs.(A16a) and(A16b), the propa-

contribution to the propagated fiel{z,t) that is given by ~ 9ation velocity of a stationary point of the envelope of a
dominant pulse envelope is equal to the classical group ve-
locity evaluated at the instantaneous angular frequency of

1/2 . 7 ,
Re i ex Ech(prk,a)
Uy

oscillation associated with this stationary point.
X 2 7 PRI
[—d @M(prk,G ) dw]

A(z,t)=; Au(z,1), (1239

Proposition 4.Finally, from Eg. (A13), if the instanta-
neous oscillation frequency of a stationary point of the enve-
lope of a dominant pulse component of the propagated field
is equal to the applied carrier frequenay, of the input
pulse, then the absorption coefficient of the dispersive me-
dium attains a stationary point at this carrier frequency. This

(12b stationary point is a maximurgminimum) if the correspond-
ing stationary point of the envelope of the respective pulse
component is a minimuntmaximun).

as z—. The summation index appearing in Eq(12a For the single resonance Lorentz model dielectric that is
refers only to those saddle poirfeg, of the modified phase of central interest here, both analytical and numerical inves-
function®y (w,8’) that are relevarft37,39 at the particular  tigations have revealef37,39 that the modified complex
value of ¢" under consideration; their respective locations inphase function®,,(w,’) possesses five first-order saddle

AMK(th) =

27z

[1+O(Z_1)]J,

the complexo plane are denoted byp,  (6'). From Eq.  points Py, k=1,2,...,5. As the space-time parametr
(12b), each component field,(z,t) is due to the asymp- increases over its entire domain, only each of the two saddle
totic contribution of the respective relevant saddle pointpointsPy,, |=1,2, whose main dynamical evolution occurs

Puk to the uniform asymptotic approximation of the modi- in  the first quadrant of the complexw plane
fied integral representatiofva) of the propagated field. In (w,=0, w;=0), can become a dominant, relevant saddle
the derivation of Eqs(12a and (12b) the relevant saddle point over its corresponding’ interval A 6, . The asymp-
points of®,(w, ') are considered to be isolated from eachtotic behavior of the propagated fiel(z,t) is then domi-
other and of first order at each value ®f, and only the first nated by the respective pulse componggi(z,t), |=1,2, in
term in the asymptotic expansion about each of these saddéach corresponding’ interval. Moreover, it was found
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2T = 0.2 fsec w.= 5.75 X 101® sec™! z = 83.92z;, = 1.0 um
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| | . .
] O, = 1.4222 O, = 9.0264 _ FIG. 1. Asymptotlc_ descrip-
— 10 x 101 ] [ tion of the dynamical field struc-
! ture due to an input ultrashort
~15%10"% sec™ 0 @, 15x 10" sec™

Gaussian-modulated cosine wave
with initial pulse width 2T
=0.2 fsec and applied carrier fre-
quency w,=5.75x 10'® sec’! at
a propagation distance of 83.92
absorption depths at that carrier

M4 ; frequency. The upper diagram il-
w_ , lustrates the frequency depen-
"""""" o > . T dence of the real part of the modi-

bom gz | fedcompiecpmase ncten send
= —73953 ., Ore,,, = 9.0261 , equency axis, :
diagram illustrates the dynamical
~30x10" sec™ , — T | L Pl N (O evolution in the complex» plane
of the five saddle points of the
modified phase function as a func-
tion of the space-time parameter
Az,1) MODIFIED NUMERICAL ASYMPTOTIC THEORY 6", and the bottom diagram illus-
L0x107 trates the dynamical evolution of
®, =0, = 92669 X 10'® sec™! the propagated pulse at the pre-
A —a @, =, = 13534 X 10'6 sec™! scribed propagation distance in
the single resonance Lorentz
model dielectric.

w; = Im{w}
30%x10% sec™

wrCM5

—15%10" sec™ 0 15%10" sec™
o, = Re{w}

3.47x107*

0

-5.84 x107
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[37,39 that in eachd’ interval A6y, , |=1,2, the envelope precisely the same value as that obtained from(Ea. with
of the corresponding dominant pulse componggf(z,t) is a quadratic approximation of the modified phase function
Gaussian shaped with a single stationary point that is a maxabout the respective real frequency value at which the real
mum. From Eq.(12b), the value of the pulse component partXy(w,) of the modified phase function attains one of its
Ami(z,t) at its associated stationary point is given by two local maxima along the positive real frequency axis.
This point is, in general, different from the poiat= 0. at
c |\ ¥ . z which the expansion in the quasimonochromatic approxima-
Aow=\ 27z REIUmEXp - Py(wp, . bp,) tion [27—3§ is taken about, and approaches this point in the
-1/2
[1+0(z l)]]’ IV. DISCUSSION

limit as T—e at fixedz>0.
(13 The transition from the ultrashort to the quasimonochro-
matic pulse regime is now illustrated through several ex-
asz—, for|=1,2, wheref, andw, aredefinedinEqgs. amples. Consider first the case of an input ultra-
(A10a) and(A10b). If the contour of integration appearing in short Gaussian-modulated cosine wave with initial pulse
Eqg. (7a) for the modified integral representation of the propa-width 2T=0.2 fsec and applied carrier frequency
gated field is taken as the real frequency axis, then each @$.=5.75<10'® sec !, which is near the upper end of the
the field values given by Eq13) may be showri37] to be  absorption band of the single resonance Lorentz model di-

dzch(prl,ele)

X
dw?
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2T =02 fsec o, = 5.75 X 10¥ sec™!  z =83.92z; = 1.0 um

OSCILLATION FREQUENCY

16 -1
15x10 sec™ 1 + : Modified Numerical Asymptotic Theory

] , FIG. 2. The#' evolution of the instantaneous
] 1/2 Re {wspm(e )} . X
w2 - 82 frequency of oscillation of the propagated field of
4 1 .
B S S Fig. 1.
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E [ 2 62]1/2 / ,
e Re {0g,,(0")}

0 ————

- 10 0 10

electric considered heresee the discussion following Eqgs. Gaussian-modulated envelope pulse has evolved into two
(11a and (11b], at a propagation distance of Gaussian-shaped pulse components, the first pulse compo-
z=83.92,=1.0 um, wherezy denotes thee~! absorption nent containing high-frequency oscillations while the second
depth at the carrier frequeney,. The input Gaussian enve- pulse component contains low-frequency oscillations.
lope at the plang=0 is chosen to be centered at the timeThe first pulse componenfg(z,t)=Ay.(z,t) is recog-
to=15T. The upper diagram in Fig. 1 illustrates the fre- nized as a generalized Sommerfeld precursor figit}25
guency dependence ¥, (w,), the real part of the modified and is due to the asymptotic contribution of the first-order
complex phase function evaluated along the real frequencgaddle pointPy,. This generalized Sommerfeld precursor
axis, as given by Eqs(Al2a—-(Al12c). Notice that for a field is the dominant pulse component of the propagated
physically realizable input Gaussian pulse,>0 and the field A(z,t) for all 8’ <1.455, which is the space-time inter-
two local maxima ofX;(w,) that are located along the posi- val whenP\,, is the dominant relevant saddle point of the
tive real frequency axis abpy,, I=1,2, always dominate the modified phase functio®y(w,8'). The peak in the enve-

remaining third local maximum that is situated along thelope of Ag(zt) occurs at the space-time poirit=6p
negative real frequency axis @ty [37]. As a consequence, =0p,,,=1.256, at which point the propagated field oscillates
particular attention may be focused on each of the two frewith the instantaneous angular frequeney=w, =w,
quency intervals around the poinig,, andwpmy,. The dy-  =9.2669<10'® sec !. For all #'>1.455, the propagated
namical evolution in the complex plane of the five saddle field A(z,t) is dominated by the second pulse component
points Py, k=1,2,...,5 of themodified phase function Ag(zt)=Ap1(z,t), which is recognized as a generalized
®dy(w,0’) as a function ofg’ is illustrated in the middle Brillouin precursor field[24,25. This pulse component is
diagram of Fig. 1. Notice that the two saddle poiRig, and  due to the asymptotic contribution of the first-order saddle
Pus approach the two left branch points. and ' , re-  pointPy,;, which is the dominant relevant saddle point of the
spectively, while the two saddle poin®,,; and P,,, ap- modified phase functio®(w,#") over this space-time in-
proach the two right branch poinés, andw’, , respectively, terval. The peak in the envelope 8f3(zt) occurs at the

of the complex index of refraction(w) as 6’ approaches Space-time point=6, =6, =1.6724, at which point the
+o. Moreover, the saddle poir®,, asymptotically ap- propagated field oscillates with the instantaneous angular fre-
proaches the vertical line = w, from above a®’ tends to  quency w;=w,,= wpm1=1.3534x10'"® sec''. Notice the
—oo, while the saddle poinP,; asymptotically approaches close agreement between the numerical values of the follow-
the same line from below a& tends to+«. The first-order ing ordered pairs of quantities:

saddle poinP),, is the dominant relevant saddle point of the

modified phase functionb,,(w,8’) for all §’<1.455, its (Orcpyp @reyy,) = (Opy 0 @py,,),
trajectory intersecting the real frequency axis at
w=wy, ,=9.0261< 10" sec* when 6’ =6, =1.283L. (Brcypr @reyy )< (O @py,)-

For all 8’ >1.455, the first-order saddle poiRty,; is the Thi is in keebi ith the i f -
dominant relevant saddle point df,,(w,8'), its trajectory is agreement is in keeping with the first part of proposition

intersecting the positive real frequency axis at2 oli_the przegzltedlpgtsectrl]on/. luti f the |
0=, = 1.422¢ 10" sec! when 0'= 0y, =1.6871. igure 2 illustrates th@’ evolution of the instantaneous

. .. frequency of oscillation of the propagated field considered in

The close agreement between the correspondmg. quantmﬁg_ 1. The data points indicated by the symbols in the
®my, ANdwre, . as well as between the corresponding quanyiagram were numerically determined from the dynamical
tities wpy, andoc,,,, is in complete agreement with the last field evolution as described by the modified asymptotic ap-
part of proposition 2 of the preceding section. proach. The two solid curves in the figure depict tHede-

The bottom diagram in Fig. 1 illustrates the dynamicalpendence of the real parts of the saddle point locations for
evolution of the propagated field(z,t) that was computed the two dominant relevant saddle poiRg,; and Py, re-
using the modified asymptotic description presented in Eqsspectively. As the space-time parametgr increases over
(128 and (12b). It is clearly seen that the input ultrashort the domain 6’ <1.455, the instantaneous oscillation fre-
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6, =c/v,
8
1 + : Modified Numerical Asymptotic Theory
O : Numerical Experiment
5
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FIG. 3. Velocity of propagation of the peak amplitude point of each pulse component of the propagated field due to an input Gaussian

pulse. The solid curve in the figure denotes the frequency dependence of the inverse relative groupoleg{w,yk) evaluated at the
instantaneous oscillation frequenmyﬁk of the propagated field componeht,(z,t). The indicated data values are for the following cases:
1, w,=5.75<10% sec’!, 2T=0.20 fsec,z=83.924=1.0 um; 2, w,=5.75<10" sec’!, 2T=2.00 fsec, z=83.924=1.0 um;

3, w,=5.75x10'% sec’!, 2T=20.0 fsec,z=83.924=1.0 um; 4, w,=1.00x10% sec!, 2T=2.00 fsec,z=0.54%4=1.0 um;

5, 0,=3.1416<10% sec’!, 2T=2.0 fsec, z=22.53=1.0 um; 6, w,=4.00<10" sec!, 2T=2.00 fsec, z=266.624=1.0 um;

7, 0.=10.0<10" sec!, 2T=2.00 fsec,z=3.02(¢4=1.0 um; 8, w,=5.75x10" sec!, 2T=2.00 fsec,z=8.3924=0.1 um;

9, w=5.75x10" sec’!, 2T=2.00 fsec, z=839.243=10.0 um; 10, w,=5.625<10' sec!, 2T=5.0 fsec, z=19.96&,=0.2 um;

11, w,=5.625<10% sec!, 2T=5.0 fsec, z=49.912,=0.5 um; 12, w,=5.25<10'° sec’!, 2T=10.0 fsec, z=58.05%,=0.4 um;

13, 0,=5.25x10'® sec’!, 2T=10.0 fsec,z=145.1%4,=1.0 um; 14, ».=5.00<x10'® sec’?, 2T=20.0 fsecz=176.1z4=1.0 um.

qguency values of the propagated fieddz,t) are equal to The frequency components of the propagated field consid-
those of its dominant first pulse componentered in Figs. 1 and 2 that lie within the medium absorption
Ag(z,t) =Ay2(z,t), and lie along the solid line depicting the bandwy< w,< w; have been greatly attenuated at the chosen
6" dependence of the real part of the saddle point location gbropagation distance and are practically absent from the
Pm2, Which is the dominant relevant saddle point of thepropagated field structure. Since the input carrier frequency
modified phase function over this enti®¢ domain; thatis, . lies within the absorption band in this case, the propa-
gated pulse spectrum evolves into two spectral component
wg(0")=Re{wp, (0')} (14 domains, one a high-frequency component domain that lies
above the medium absorption band with a maximum at
for all ¢’<1.455. Since the input carrier frequenay. is ;= wyy,, the other a low-frequency component domain that

situated in the absorption band of the medium, and sinCges pelow the medium absorption band with a maximum at
R({wspm(e’)} approaches the upper end of the absorpt|onwl:wmxz_ The first pulse componer,»(z,t) of the propa-

band from above aﬁ’?oo, then wy(0')>w. Forall in- a0 fielda(z,t) is then due to the propagated spectral com-
cr’easmg values of ¢ over. the space-tlme_ mt_erval ponents in the high-frequency band so that the field at the
0'>1.455, the values of the instantaneous oscillation fre'peak in the envelope oAy,(z.t) oscillates at the angular
qguency of the propagated fiels(z,t) are equal to those of f _ _ f the dominant spectral
its now dominant second pulse  component requency @oyp~ Preyy T Cmy ° P
Ag(z,t)=Ay1(z,1), and lie along the solid line depicting the component in this frequency band. The second pulse compo-
¢’ dependence of the real part of the saddle point location of€NtAwi(z,t) of the propagated fiel\(z,t) is due to the
Pu1, Which is the dominant relevant saddle point of thePropagated spectral components in the low-frequency band
modified phase function over this entié¢ domain; that is, SO that the field at the peak in the envelope/fqfi(zt)
oscillates at the angular frequeney, ==wc = ®my, Of
wg(8')=Re{wsp, (')} (15  the dominant spectral component in this frequency band.
Consider now the velocity of propagati@r,;Ml, [=1,2, of
for all §'>1.455. Since Rewsp, (0')} approaches the the peak in the envelope of each dominant pulse component
lower end of the absorption band from belowés- =, then Ay (z,t) of the propagated field\(z,t) due to an input
wg(0')<w.. These results are in keeping with proposition 1 Gaussian pulse of arbitrary initial pulse width. The numerical
of the preceding section. value of the space-time poiﬂgMI:c/valI at which the peak
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w. = 5.6250 X 1016 sec ™!

z=10.0z; = 0.0 um
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FIG. 4. Numerically determined dynamical
field evolution due to an input unit-amplitude
Gaussian-envelope-modulated cosine wave with
initial pulse width Zr=5.0 fsec and carrier fre-
quencywm.=5.625< 10'® sec ! at the input plane
(top diagram and at two increasing propagation
distances in a single resonance Lorentz model
dielectric. The horizontal axis in each diagram
denotes the retarded time with=15T. In each
of the bottom two diagrams, the solid vertical line

marks the instant of tim&' =z/c when the peak
amplitude of the propagated pulse would have ar-
rived at that propagation distance if it had trav-
eled with the speed of light in vacuum, while the
vertical dashed line marks the actual instant of
time t’=tps when the peak amplitude in the
propagated pulse arrives at that propagation dis-
tancez. The middle diagram corresponds to the
superluminal velocity case 10 and the bottom dia-
gram to the subluminal velocity case 11 depicted
in Fig. 3.
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in the envelope of each dominant pulse component opulse width Z'=5.0 fsec and applied carrier frequency
A(z,t) occurs is plotted in Fig. 3 at the corresponding valuew.=5.625< 10' sec !. The top diagram in Fig. 4 illustrates
of the instantaneous frequency of oscillatimraMI at which  the initial field evolution at the input observation plane at
that envelope peak occurs for a wide variety of input pulsesz=0, whereas the bottom two diagrams illustrate the dy-
The squares in the figure denote the values of the resul@mical field evolution of the resultant propagated field at
obtained from numerical experiments, while the crosses deWo increasing propagation distances in the single resonance
note the corresponding values determined from the resultsorentz model dielectric considered in this paper. In each of
described by the modified asymptotic approach. Both sets dhese diagrams, the horizontal axis represents the retarded
values are exactly located on the solid curve in the figurdimet’=(t—to). In each of the bottom two diagrams of this
which describes the frequency dependence of the relativigure, the vert|ca[ dashed line Qenotes the retarded instant of
inverse group velocityc/vg(w;) for the single resonance timet’=t,_ atwhich the peak in the envelope of the single
Lorentz model dielectric considered here. These results aominant, Gaussian-shaped pulse componggtz,t) of
in keeping with proposition 3 of the preceding section. A(z,t) arrives at that corresponding propagation distance,
Of particular interest in Fig. 3 is case 10 which shows thatwhile the solid vertical line denotes the retarded instant of
the peak veIocity;le, may become larger than the speed oftime t' =t,;;=2z/c when this envelope peak would have ar-
light in vacuum, as well as cases 12-14 which show thafived at the corresponding propagation distance if it had trav-
vp,,» May even become negative. These cases clearly wafled at the speed of light in vacuum. <0, then the

rant further, more detailed consideration, which is nowenvelope peak oA(z,t) propagates with a negative velocity;
given. Consider first the dynamical field evolution due to anif 0<t, <t,q, then the envelope peak propagates with a
input Gaussian-envelope-modulated cosine wave with initialelocity that is greater than the speed of light in vacuum,
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FIG. 5. Numerically determined dynamical
field evolution due to an input unit-amplitude
T Gaussian-envelope-modulated cosine wave with

I5fsec  initial pulse width 2r=10.0 fsec and carrier fre-
£o=(t—tg) ' quencyw.=5.25x 10'® sec’! at the input plane
| (top diagram and at two increasing propagation
‘ z = 58.05z; = 0.4 um distances in a single resonance Lorentz model
1 A dielectric. The horizontal axis in each diagram
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Azt
&0 denotes the retarded time with=15T. In each
e, of the bottom two diagrams, the solid vertical line
i marks the instant of timé¢=z/c when the peak
amplitude of the propagated pulse would have ar-
rived at that propagation distance if it had trav-
eled with the speed of light in vacuum, while the
vertical dashed line marks the actual instant of
time t’:tpS when the peak amplitude in the
propagated pulse arrives at that propagation dis-
' tancez. The middle diagram corresponds to the
negative velocity case 12 and the bottom diagram
to the negative velocity case 13 depicted in Fig.
3.
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with a superluminal velocity while if tp>tysi, then the vy =v4(wp)=1.16 at this frequency value. However, this

envelope peak propagates with a velocity that is smaller thafrequency component is also highly attenuated by the lossy,
the speed of light in vacuuri.e., with a subluminal veloc- dispersive medium, so that as the pulse continues to propa-
ity). Notice that iftpszo, then the peak in the envelope of gate through the medium, the envelope peak shifts toward

A(z,t) would have propagated with an infinite velocity. The th_ose frequency values t_hat have less attengation assqciated
dispersive action of the single resonance Lorentz model diwith them, and accordingly propagate with subluminal
electric on the input Gaussian pulse produces the superlumyglocities; for the case illustrated in the bottom diagram of
nal velocity of the peak in the envelope of the propagated™d. 4, the instantaneous frequency of oscillation of the en-
field A(z,t) at a sufficiently small propagation distance, asvelope peak of the propagated fiehdz,t) has shifted to the
illustrated in the middle diagram of Fig. 4 with the corre- higher-frequency value, =5.83x 10" sec*, and this en-
sponding case 10 data point in Fig. 3. This same envelopeelope peak propagates with the classical group velocity
peak slows down to a subluminal velocity as the propagatiom ps=vg(wps)50.65r: at this frequency. As the propagation

distance increases, as illustrated in the bottom diagram qfistance increases, the instantaneous oscillation frequency
Fig. 4 with the corresponding case 11 data point in Fig. 3evolves out of the absorption band and the observed pulse
due to the same diSperSive action. For SUfﬁCiently SmalHynamiCS evolve toward the energy Ve|ocity descripﬁm_
propagation distances, this envelope peak occurs at an angs] which is valid in the mature dispersion regime.

lar frequency at which the group velocity is superluminal; for - The other situation of special interest is presented in Fig.
the case illustrated in the middle diagram of Flg 4, the f|e|d5, which depicts the dynamica| field evolution due to an
at the peak in the envelope @f(zt) oscillates with the jnput Gaussian-envelope-modulated cosine wave with initial
instantaneous angular frequensy =5.71x 10" sec *and  pulse width Z=10fsec and applied carrier frequency

it propagates with the classical group velocity w,=5.25x 10 sec !. The dynamical field evolution of the
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input pulse at the plane=0 is illustrated in the upper dia- through a resonant dielectric comprised of a homogeneous
gram of Fig. 5, and the dynamical evolution of the resultantdistribution of two-level atoms embedded in a nondispersive
propagated field at the two propagation distarnce®.4 and  host medium, Crisp29] utilized the semiclassical theory for-
1.0 um in the single resonance Lorentz medium considerednalism to show that both the superluminal and the negative
here are illustrated in the middle and bottom diagrams, revelocity dynamics of the envelope peak of the propagated
spectively, of this figure. It is clearly seen in this figure se-pulse are due to the finite response time of the resonant at-
quence that at a sufficiently small propagation distance, thems on the input Gaussian pulse. Notice also that both su-
peak of the envelope of the single dominant, GaussianPerluminal and negative group velocities in both attenuative
shaped pulse componets(z,t) of the propagated field and amplifying media have been observed experimentally
A(z,t) propagates with a negative velocity, as seen in thé43—45. The attenuative medium results are in agreement
middle diagram of Fig. 5, which corresponds to the case 13Vith the results of the generalized asymptotic description
data point in Fig. 3. The velocity,_ at which the envelope Presented in this paper at small propagation distances. How-
peak ofA(z,t) propagates remains negative while its abso-SVer. our analys[s also cIearIy_shows that the gengrahzed
lute value increases as the propagation distance is slight symptotic description evolves into the energy velocity de-

increased, as seen in the bottom diagram of Fig. 5, whic criptio_n as t_he prop_agation Qistance incr_eases in_to _the ma-
’ f ure dispersion regime. This asymptotic description of

corresponds to the case 13 data point in Fig. 3. This phenon‘% . | tion i | di . di
enon is directly attributed to the action of the material dis- aussian puiseé propagation in a lossy, dispersive medium,
hich is uniform in the initial pulse width, also provides a

persion on the frequency components of the pulse as it/ o >
propagates through the lossy, dispersive medium. In thi%lear description of the transition from the ultrashort pulse

case, the temporal spectrum of the input Gaussian pulse gnit Ts_l/é, in which the propagated pulse separates into a
sharply peaked around the carrier frequengywhich lies in general!zed Sc_)mmerfeld precursor pulse component and a
the upper half of the medium absorption band. As the propagenerallzed. Brillouin precursor puilse componéﬂ_&] to .the
gation distance increases, the low-frequency components th%ltowIy varying envelope(or quasimonochromaticregime

are present in the input pulse spectrum are attenuated at 1'/5tmd Vgh'Ch _thel propagfaiﬁd f|etl\5iv dyn|am|cs becom(te
larger rate than are the high-frequency components. Cons ominated by a single one of these two pulse components.

quently, as the propagation distance increases, the prop lotice that for the numerical examples presented in this pa-

gated pulse spectrum becomes dominated by an increasin%r’ the transjtion between the ultrashort gnq slowly \./aryi.ng
higher-frequency component, and the peak in the envelope velope regimes occurs at the charf_;lcterlsnc relaxation time
the propagated field(z,t) propagates with the group veloc- 1./5= 0.357 fSQC of this hlgh!y absorbing Lorgntz model me-
ity at this frequency value. At the small propagation distanced'um'_ As a po_mt of_cc_>mpar|son, about the |nfra4red gtl)sorp-
considered in the middle diagram of Fig. 5, the dominanto" i€ in tiply distilled HO at v=1.13x 10" sec™,
spectral component of the propagated field occurs at the a2/ 10" sec'* so that 15=37 fsec.

gular frequency valuen, =5.29x10'® sec *>w., which

still lies within the absorption band of the medium, and the ACKNOWLEDGMENT

envelope peak 0A(z,t) propagates with the classical group  Thg research presented in this paper was supported by the
velocity vp =v4(wp)=—2.86 at this frequency value. At applied Mathematics Division of the United States Air
the slightly larger propagation distance considered in the botForce Office of Scientific Research under Grant Nos.
tom diagram of Fig. 5, the dominant spectral component 0F49620-92-J-0206 and F49620-94-1-0430.

the propagated pulse has been shifted further to the higher-
frequency valuew, =5.35<10'° sec'* and the envelope

peak ofA(z,t) now propagates with the classical group ve- _ _ _
locity vp =vg4(wp)=—4.45% at this higher angular fre-  From Egs.(12a and (12b), if Py, is the dominant rel-

guency. This observed trend that the group velocity of thefvant Sa,dqle poin’t ,Of the modifieq complex phase function
envelope peak ofA(z,t) becomes increasingly negative asq)'\{'("”e ) in the mtervaIAQW, l.e., the rel_evant s_ado_lle
the propagation distance increases remains intact as t 'nt, with the least exponential (_1ecay a_sso_<:|ated W'th it for
propagation distance is increased further; however, the & ¢' €A 0w, then the asymptotic contributiohy,(z,t) is
overall field amplitude also rapidly attenuates to zero in thisthe do_mma_mt ,pulse _component of the propagated field
case. Again, as the propagation distance increases into thgdZt) in this 6" domain. At each saddle poiMy, of the
mature dispersion regime, the pulse dynamics evolve towarfodified complex phase functioty (w,6") the following
the energy velocity descriptio#0—43. pair of relations are satisfied:

Similar analytical and numerical results have also been
reported by Garrett and McCumblg7], who argue that, for IXu (o, wi,0")
input Gaussian-modulated harmonic wave with no true be- dw,
ginning or end with carrier frequency in the anomalous dis-
persion region of a Lorentz-type medium, the superluminal (Ala)
and negative velocity dynamics of the envelope peak of the
propagated pulse are both due to the action of the dispersive/Xu (o, ,;,6")
medium on the weak early frequency components of the in-— 54,
put Gaussian envelope. Moreover, in his analytical investi-
gations of the propagation of an input Gaussian pulse (Alb)

APPENDIX

_ aYM(wr ) Wi 10,)

8wi :0’

w=w 0=
Pui Pui

I w(wr,0i,0")

dw,

w=w
Pui
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and also which was obtained from Eq12b). Application of the chain
rule and use of EqgAla) and(Alb) in Eq. (A6) then yields

d*®y(w,0") ‘dzq)’\"(wpmwg,)‘ [37]

— = —

4o lpmp, do [ dDy(wp, ,0) |12 r{ |
———7 | exg-Xu(wp, ,op ,0)
 [d2By(wp,, . 0) do ¢ M
xexplag——qg 7 |70 X{—Aowi(0")+Imwp, (6")]}=0, (A7)
(A2) " which is satisfied when the condition

Here, Xy=Reg®y}, Yy=Im{®y}, and o,=Reo}, IM{wp  (68")}=Au(6") (A8)
w;=Im{w}, and the proper branch of the argument of the Ml
term appearing in EqA2) is specified during the implemen- i satisfied, where
tation of the modified asymptotic approat0,11,16,3T.

The instantaneous angular frequency of oscillation of d 2
Awi(z,t), as well as that ofA(z,t), over the §’ interval Azw(a’):za[m Joz2Pmlwe, (67),6') 2”=O(z‘1)
A6y, is obtained from the time derivative of the oscillatory (A9)
phase term appearing in E.2b) as[8,16,2§

asz— +oo, so that this quantity is asymptotically negligible
z ) i in comparison to Revp, (6')}. It follows from Eg. (A6)
@1, (0=~ 411 g Ym(@p,,(0"),0p, (6),6") that such a stationary point is a maximgminimum) when
the time derivative of the quantity appearing inside the sec-
d*®y(wp,, (6'),6") ond set of bracket§} on the left-hand side of EqA7) is
ar do? . negative(positive.
Let Oy, denote the space-time parameter value in the
interval A 6y, when the trajectory followed in the complex
, , - , o plane by the dominant relevant saddle pdhy, of the
where  wp (6')=Re{wp, (6')} and wp (0=  pqqified phase functiod,(w,#’) intersects the real fre-
Im{wp,, (6")} are the real and imaginary parts of the rel-quency axis at the real frequency value denoted by
evant saddle point location, respectively. Application of thewrcW:prl(Grch). Moreover, Iet¢9pMI denote the space-

chain rule and EqgAla) and(Alb) to Eq.(A3) then yields  time point in the same space-time intervaby,, when the

1

2

+

(A3)

[37] envelope of the dominant pulse componént,(z,t) of the
propagated field\(z,t) attains its corresponding stationary
w,MI(e’):Re{prl(e’)}+AlM|(0’)~Re{prl(a’)}, point whose instantaneous frequency of oscillation is de-
(Ad) noted byprl. From Eqg.(A4) and Eqs.(A6)—(A9) one has
that
where the final expression is asymptotically valid as
z— +o. Here the termA,y,(0’) is given by Opy = Orcppr (A109)
Ao (81 1d [ é{olzch(prl(19'),0') o) and
wmi(0)==z=Yar 5 =0(z"
2 dt de wp,v”:wrc,v”:wPMl(gle):wPW(arch)- (A10b)

(A5)

F Egs.(7 139 i h haft37
asz— +, so that this term is asymptotically negligible in rom Eqs.(7¢) and (133 it may be shown tha37]

comparison to the first term on the right-hand side of Eq. IXy(w; w;,6") Xy ()
(A4), as indicated in the final expression. 3 = e, =0,
In any particular@’ interval A 8y, , the stationary points @r w=owp @r w=op

of the envelope of the dominant field componégj(z,t), (A11)
as well as those of the envelope of the propagated field
A(z,t) over thatd' interval, are given by the solutions of the where
equation
Xu(p) =Re®y (o, 0;,0")|u =0} =X(@;) + Xi(w;)

d [ d* Py (wp,, (6),60")] ~12 (A12a)
dt de? denotes the real part of the modified phase function evalu-
ated along the real frequency axis, with
z _
XeX;{EXM(wLW(e’),wLMI(0’),0’)” =0, (A6) X(w)=Re{ (o, 0;,0")], -0} =~ wni(w)

(A12b)
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being the real part of the classical phase function evaluatedttains a stationary point may be obtained from EfLb)
along the real frequency axis, and with with the resulf37]

cT? X ]
Xf(wr):Re{q)f(wr1wi)|wi:0}:_E(a’r—wc) alezﬁT[wrnr(wr)]wr:w ! (A15)

Pm
(Al120)
wheren,(w) denotes the real part of the complex index of
being the real part of the phase term that is contributed byefraction. This stationary point then propagates with the ve-
the spectrum of the input Gaussian pulse-modulated singcity
wave with carrier frequency, evaluated along the real fre-

guency axis. Substitution of Eq$Al12a—-(Al2¢) in Eq. o
(A11) then yields[37] Vppi = K:vg( @p,) (Al63)
Ml
J = T where
a_a)r[a(wr)]wr:wpm__Z(prl_wC)’ (A13)
J | o, -1
where[see Eq.(6)] Ug(wpw): ﬁ_wr ?nr(wr) (A16b)
Wy “r=Ypy,
a(w)=—"ni(w) (A14)

is the classical group velocity evaluated at the angular fre-

denotes the coefficient of absorption of the dispersive meduency wp  =wr =wp (6 ) at which the dominant

dium with complex index of refractionn(w)=n,(w) relevant saddle poinP,, of the modified phase function

+inj(w). dy(w,0") intersects the real frequency axjsee Egs.
The value 6, A6y when the envelope ofy(zt) (A104 and(A10b)].
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